Maximizing sudler products via ostrowski expansions and cotangent sums

HIGHLIGHTS

SUMMARY

    X K k=1 + Oα (ii) If bk ≤ 0.99ak+1, then Z b* /ak+1 k |bk - bk* | dk (N )=ak+1 + I{bk ≤0.01ak+1 } log ak+1. log|2 sin(π x)| dx + OT ak+1 bk /ak+1 Remark. εk (N ) ≥ -qk (bk+1 ∥qk+1 α∥ + bk+3 ∥qk+3 α∥ + · · · ) ≥ -qk (1 - δ)ak+2 ∥qk+1 α∥ + ak+4 ∥qk+3 α∥ + · · · =-qk (1 - δ)(∥qk α∥ - ∥qk+2 α∥) + (∥qk+2 α∥ - ∥qk+4 α∥) + · · · =-qk (1 - δ)∥qk α∥ + δ∥qk+2 α∥. For any k ≥ 4 and any x ∈, Vk* (x) ak 0 ′ (2 + x) T + log(ak . . .

     

    Logo ScioWire Beta black

    If you want to have access to all the content you need to log in!

    Thanks :)

    If you don't have an account, you can create one here.

     

Scroll to Top

Add A Knowledge Base Question !

+ = Verify Human or Spambot ?