Vorhersage von hydrologischen abflusskennwerten in unbeobachteten einzugsgebieten mit machine learning

HIGHLIGHTS

  • who: Runoff characteristics and colleagues from the Department have published the paper: Vorhersage von hydrologischen Abflusskennwerten in unbeobachteten Einzugsgebieten mit Machine Learning, in the Journal: (JOURNAL)
  • how: Anthropogenic influences such as reservoirs or cross-basin water transfers were considered in the model by additionally created attributes. The test results showed that a deviation of approximately 20% can be expected for the of in catchments which also includes highly anthropogenically influenced catchments.

SUMMARY

    Einleitung Hydrologische Abflusskennwerte beschreiben die Charakteristik eines Einzugsgebiets (EZG) und bilden die Basis Vorhersage von hydrologischen Abflusskennwerten in unbeobachteten . . .

     

    Logo ScioWire Beta black

    If you want to have access to all the content you need to log in!

    Thanks :)

    If you don't have an account, you can create one here.

     

Scroll to Top

Add A Knowledge Base Question !

+ = Verify Human or Spambot ?